

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

Liquid coordination complexes (LCCs) for the synthesis of semiconductor nanoparticles

Beth Murray

Supervisors: Prof. Gosia Małgorzata Swadźba-Kwaśny and Prof. John D. Holbrey

QUILL Meeting, 26th March 2024

Confidential

Abbreviations

- LCCs liquid coordination complexes
- TEM transmission electron microscopy
- P₈₈₈Se trioctylphosphine selenide
- P₈₈₈O trioctylphosphine oxide

Presentation overview

Introduction

Liquid coordination complexes (LCCs)

QUEEN'S UNIVERSITIONIC LIQUID LABORATORIES QUILL

Liquid Coordination Complexes

Liquid Coordination Complexes Formed by the Heterolytic Cleavage of Metal Halides**

Fergal Coleman, Geetha Srinivasan, and Małgorzata Swadźba-Kwaśny*

AICI₃ + L
$$\chi_{AICI_3} = 0.50 \text{ to } 0.60$$
 mobile liquids

$$GaCl_3 + L$$
 $\chi_{GaCl_3} = 0.60 \text{ to } 0.75$ mobile liquids

Comparison of liquid coordination complexes and ionic liquids

	LCCs	ILs
χ_{MCl_3}	2MCl ₃ + 2L	MCl ₃ + [cation]Cl
3	J	\
0.50	$[MCl_2L_2][MCl_4] \rightleftharpoons 2[MCl_3L]$	[cation][MCl ₄]
	↓+ MCl ₃	
0.60	$[MCl_2L_2][M_2Cl_7] \rightleftharpoons [MCl_3L] + [M_2Cl_6L]$	+ MCl ₃
	↓+ MCl ₃	↓ ·
0.67	$[MCl_2L_2][M_3Cl_{10}] \rightleftharpoons 2[M_2Cl_6L]$	[cation][M ₂ Cl ₇]

Dalton Transactions

An international journal of inorganic chemistry rsc.li/dalton

QUEEN'S UNIVERSITY IONIC LIQUID LABORATORIES QUILL

Dr James Hogg

Green Chemistry

PAPER

View Article Online

Cite this: Green Chem., 2015, 17,

Liquid coordination complexes: a new class of Lewis acids as safer alternatives to BF₃ in synthesis of polyalphaolefins

James M. Hogg, Fergal Coleman, Albert Ferrer-Ugalde, Martin P. Atkins and Małgorzata Swadźba-Kwaśny*

Green Chemistry

PAPER

View Article Online

Cite this: Green Chem., 2015, 17.

Friedel-Crafts alkylation catalysed by GaCl₃-based liquid coordination complexes

Karolina Matuszek, Anna Chrobok, Anna Chrobok, Fergal Coleman and Małgorzata Swadźba-Kwaśny*b

Małgorzata Swadźba-Kwaśny et al. Liquid coordination complexes of Lewis acidic metal chlorides: Lewis acidity and insights into speciation

Dr Karolina Matuszek

Semiconductors and nanoparticles

Conduct electrical current only when influenced by external stimuli (e.g. light or heat)

What is the need for nanostructure semiconductors?

Semiconductors for solar energy storage

Si solar cells – rigid, heavy and brittle

Nanoparticles as thin film solar cells

Previous work

Synthesis of In₂Se₃ from ILs/LCCs

system

• In source: [P_{8 8 8 10}][InCl₄]

• Se source: Ph₂Se₂

• Reaction temperature: up to 240 °C

Microwave synthesis

LCC system 1 • In and Se source: P₈₈₈Se-InCl₃ $\chi_{InCl_3} = 0.25$

• Reaction temperature: 250 °C

LCC system 2 • In and Se source: P₈₈₈Se-InCl₃ χ_{InCl_3} = 0.50

• Reaction temperature: 250 °C

In operando TEM synthesis of In₂Se₃ from LCCs

QUEEN'S UNIVERSITY BELFAST

QUEEN'S UNIVERSIT

TEM: Transmission electron spectroscopy

Experimental set-up

- In and Se source: P_{888} Se-InCl₃ χ_{InCl_3} = 0.50
- LCC diluted with dichloromethane
- Electron dose $\sim 30 \text{ e}^{-}/\text{ Å}^2\text{s}$
- Heating 2 °C/s until 260 °C

Dr Miryam Arredondo-Arechavala School of Mathematics and Physics

In operando TEM synthesis of In₂Se₃ from LCCs

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

Results and discussion

LABORATORIES QUILL **BELFAST**

In operando TEM synthesis of Indium(III) selenide from LCCs

 $P_{888}Se-InCl_3 (\chi_{InCl_3} = 0.50)$

In₂Se₃ nanoparticle formation

Unique nanostructures – 'dandelion' morphology

EDX analysis confirms structures are primarily comprised of In and Se ₁₂

TopSe-InCl₃

Heating 245 - 250°C

Ostwald ripening

- Droplets flatten when heated look like they disappear
- Droplets grow when further heated
- Nanoparticles then form very quickly

Kinetic study of In₂Se₃ nanoparticles

2 @ 170 °C

@ 210 °C

Growth as a function of temperature

5 5 µm

Conclusions

- In operando TEM synthesis to provide insights into the dynamics for indium(III) selenide nanoparticle formation from LCCs
- Smaller droplets coalesce quicker
- 'Dandelion-like' morphology observed
- Submitting for publication in Journal of Materials Chemistry A

Acknowledgements

Prof Gosia Swadźba-Kwaśny

Prof John Holbrey

Dr Miryam Arredondo-Arechavaia

Mr John Scott

Mr Nicholas Stephen

Dr Praveen Kumar

Prof Peter Nockemann

Dr Sophie Tyrell

Dr Rachel Whiteside

Dr Janine Richter

Dr Yoan Delavoux

Dr Fergal Coleman (Ionic Technologies)

